《野猪乐园》显示文章详细内容: [展开] [回复] [网址] [举报] [屏蔽]
玉金明
玉金明目前处于离线状态
等    级:资深长老
经 验 值:22818
魅 力 值:1951
龙    币:27302
积    分:18293.3
注册日期:2001-12-15
 
  查看玉金明个人资料   给玉金明发悄悄话   将玉金明加入好友   搜索玉金明所有发表过的文章   给玉金明发送电子邮件      

当年学离散数学时学的。这个概念啊重要啊。
  在抽象代数(abstract algebra)中,同构(isomorphism)指的是一个保持结构的双射(bijection)。在更一般的范畴论语言中,同构指的是一个态射,且存在另一个态射,使得两者的复合是一个恒等态射。
编辑本段
定义

  存在E和F两个集合,且对于E、F各存在一种运算,我们记作(符号可更换)*和· ,对于E、F,*、·分别封闭(即对于任意两个集合内的元素,进行运算之后依然为该集合的元素,详情见群论)。我们说f是一个同构当且仅当f∈Γ(E,F) 和f是一个双射且对于E内的任意元素a,b都有f(a*b)=f(a)·f(b)。如果上面所描述的E、F为同一集合E,则说f是一个自同构 。
  常见的同构有:群同构,环同构,域同构,向量空间同构。
编辑本段
正式的表述是:

  同构是在数学对象之间定义的一类映射,它能揭示出在这些对象的属性或者操作之间存在的关系。若两个数学结构之间存在同构映射,那么这两个结构叫做是同构的。一般来说,如果忽略掉同构的对象的属性或操作的具体定义,单从结构上讲,同构的对象是完全等价的。
  假设M,M′是两个乘集,也就是说M和M′是两个各具有一个闭合的结合法(一般写成乘法)的代数系,σ是M射到M′的双射,并且任意两个元的乘积的像是这两个元的像的乘积,即对于M中任意两个元a,b,满足σ(a·b)=σ(a)·σ(b);也就是说,当a→σ(a),b→σ(b)时,a·b→σ(a)·σ(b);那么这映射σ就叫做M到M′上的同构。又称M与M′同构,记作M~M′。
编辑本段
引入同构的目的

  在数学中研究同构的主要目的是为了把数学理论应用于不同的领域。如果两个结构是同构的,那么其上的对象会有相似的属性和操作,对某个结构成立的命题在另一个结构上也就成立。因此,如果在某个数学领域发现了一个对象结构同构于某个结构,且对于该结构已经证明了很多定理,那么这些定理马上就可以应用到该领域。如果某些数学方法可以用于该结构,那么这些方法也可以用于新领域的结构。这就使得理解和处理该对象结构变得容易,并往往可以让数学家对该领域有更深刻的理解。

--
2012-10-18 21:57:43   此文章已经被查看326次   
 相关文章: [回复]  [顶端] 



  您必须登录论坛才可以发表文章:
 
用户名:   密码:   记住密码:    (忘记密码 注册




版权所有 回龙观社区网 经营许可证编号:京B2-20201639 昌公网安备1101140035号

举报电话:010-86468600-5 举报邮箱: